Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High emissivity coatings based on polysilazanes for flexible Cu(In,Ga)Se2 thin-film solar cells

Identifieur interne : 000114 ( Main/Repository ); précédent : 000113; suivant : 000115

High emissivity coatings based on polysilazanes for flexible Cu(In,Ga)Se2 thin-film solar cells

Auteurs : RBID : Pascal:14-0084039

Descripteurs français

English descriptors

Abstract

Flexible Cu(In,Ga)Se2 (CIGSe) thin-film solar cells have received much attention for power generation in space applications. This is due to their superior radiation hardness and a high specific power. A significant drawback lies in the low emissivity ε of the CIGSe solar cells, which leads to an increase in the cell temperature during operation in space and a decrease in the efficiency. To overcome this problem, optical coatings like SiO2 or Al2O3, that provide high emissivity, have to be applied on the solar cells. It is well known, that silica-like coatings can be formed at relatively low temperatures by the use of polysilazanes. Thus, this paper reports on the development, processing and characterisation of high emissivity coatings based on the polysilazanes PHPS and HTTS for flexible CIGSe thin-film solar cells. Therefore, the conversion behaviour, the coating properties like the coating thickness and microstructure, the solar absorbance as well as the emissivity of coated cells were investigated. The ability as high-ε coatings could be proved by optical reflection measurements showing a significant increase of the emissivity from 0.34 for an uncoated CIGSe cell to 0.78 for a HTTS-coated solar cell.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0084039

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">High emissivity coatings based on polysilazanes for flexible Cu(In,Ga)Se
<sub>2</sub>
thin-film solar cells</title>
<author>
<name sortKey="G Nthner, Martin" uniqKey="G Nthner M">Martin G Nthner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Bayreuth, Ceramic Materials Engineering (CME)</s1>
<s2>95440 Bayreuth</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>95440 Bayreuth</wicri:noRegion>
<wicri:noRegion>Ceramic Materials Engineering (CME)</wicri:noRegion>
<wicri:noRegion>95440 Bayreuth</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pscherer, Markus" uniqKey="Pscherer M">Markus Pscherer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Bayreuth, Ceramic Materials Engineering (CME)</s1>
<s2>95440 Bayreuth</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>95440 Bayreuth</wicri:noRegion>
<wicri:noRegion>Ceramic Materials Engineering (CME)</wicri:noRegion>
<wicri:noRegion>95440 Bayreuth</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kaufmann, Christian" uniqKey="Kaufmann C">Christian Kaufmann</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Helmholtz Centre Berlin for Materials and Energy (HZB)</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Motz, G Nter" uniqKey="Motz G">G Nter Motz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Bayreuth, Ceramic Materials Engineering (CME)</s1>
<s2>95440 Bayreuth</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>95440 Bayreuth</wicri:noRegion>
<wicri:noRegion>Ceramic Materials Engineering (CME)</wicri:noRegion>
<wicri:noRegion>95440 Bayreuth</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0084039</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0084039 INIST</idno>
<idno type="RBID">Pascal:14-0084039</idno>
<idno type="wicri:Area/Main/Corpus">000099</idno>
<idno type="wicri:Area/Main/Repository">000114</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alumina</term>
<term>Ceramic materials</term>
<term>Coated material</term>
<term>Conversion coating</term>
<term>Copper selenides</term>
<term>Electric power production</term>
<term>Emissivity</term>
<term>Gallium selenides</term>
<term>Hardness</term>
<term>High power</term>
<term>Indium selenides</term>
<term>Layer thickness</term>
<term>Low temperature</term>
<term>Low-emissivity material</term>
<term>Microstructure</term>
<term>Optical coating</term>
<term>Optical measurement</term>
<term>Optical reflection</term>
<term>Performance evaluation</term>
<term>Polymer</term>
<term>Power production</term>
<term>Protective coatings</term>
<term>Quaternary compound</term>
<term>Silicon oxides</term>
<term>Solar cell</term>
<term>Space application</term>
<term>Thin film cell</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Emissivité</term>
<term>Revêtement protecteur</term>
<term>Cellule couche mince</term>
<term>Cellule solaire</term>
<term>Production énergie</term>
<term>Production énergie électrique</term>
<term>Application spatiale</term>
<term>Dureté</term>
<term>Grande puissance</term>
<term>Evaluation performance</term>
<term>Revêtement optique</term>
<term>Basse température</term>
<term>Dépôt conversion</term>
<term>Epaisseur couche</term>
<term>Microstructure</term>
<term>Réflexion optique</term>
<term>Mesure optique</term>
<term>Polymère</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>Oxyde de silicium</term>
<term>Alumine</term>
<term>Matériau revêtu</term>
<term>Céramique</term>
<term>Cu(In,Ga)Se2</term>
<term>SiO2</term>
<term>Al2O3</term>
<term>Matériau à faible emissivité</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Polymère</term>
<term>Céramique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Flexible Cu(In,Ga)Se
<sub>2</sub>
(CIGSe) thin-film solar cells have received much attention for power generation in space applications. This is due to their superior radiation hardness and a high specific power. A significant drawback lies in the low emissivity ε of the CIGSe solar cells, which leads to an increase in the cell temperature during operation in space and a decrease in the efficiency. To overcome this problem, optical coatings like SiO
<sub>2</sub>
or Al
<sub>2</sub>
O
<sub>3</sub>
, that provide high emissivity, have to be applied on the solar cells. It is well known, that silica-like coatings can be formed at relatively low temperatures by the use of polysilazanes. Thus, this paper reports on the development, processing and characterisation of high emissivity coatings based on the polysilazanes PHPS and HTTS for flexible CIGSe thin-film solar cells. Therefore, the conversion behaviour, the coating properties like the coating thickness and microstructure, the solar absorbance as well as the emissivity of coated cells were investigated. The ability as high-ε coatings could be proved by optical reflection measurements showing a significant increase of the emissivity from 0.34 for an uncoated CIGSe cell to 0.78 for a HTTS-coated solar cell.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>123</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>High emissivity coatings based on polysilazanes for flexible Cu(In,Ga)Se
<sub>2</sub>
thin-film solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GÜNTHNER (Martin)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PSCHERER (Markus)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KAUFMANN (Christian)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MOTZ (Günter)</s1>
</fA11>
<fA14 i1="01">
<s1>University of Bayreuth, Ceramic Materials Engineering (CME)</s1>
<s2>95440 Bayreuth</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Helmholtz Centre Berlin for Materials and Energy (HZB)</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>97-103</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000506140400120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>34 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0084039</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Flexible Cu(In,Ga)Se
<sub>2</sub>
(CIGSe) thin-film solar cells have received much attention for power generation in space applications. This is due to their superior radiation hardness and a high specific power. A significant drawback lies in the low emissivity ε of the CIGSe solar cells, which leads to an increase in the cell temperature during operation in space and a decrease in the efficiency. To overcome this problem, optical coatings like SiO
<sub>2</sub>
or Al
<sub>2</sub>
O
<sub>3</sub>
, that provide high emissivity, have to be applied on the solar cells. It is well known, that silica-like coatings can be formed at relatively low temperatures by the use of polysilazanes. Thus, this paper reports on the development, processing and characterisation of high emissivity coatings based on the polysilazanes PHPS and HTTS for flexible CIGSe thin-film solar cells. Therefore, the conversion behaviour, the coating properties like the coating thickness and microstructure, the solar absorbance as well as the emissivity of coated cells were investigated. The ability as high-ε coatings could be proved by optical reflection measurements showing a significant increase of the emissivity from 0.34 for an uncoated CIGSe cell to 0.78 for a HTTS-coated solar cell.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D05I02E</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Emissivité</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Emissivity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Emisividad</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Revêtement protecteur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Protective coatings</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Revestimiento protector</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cellule couche mince</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Thin film cell</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Célula capa delgada</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Production énergie</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Power production</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Producción energía</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Production énergie électrique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Electric power production</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Producción energía eléctrica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Application spatiale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Space application</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Aplicación espacial</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dureté</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Hardness</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Dureza</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Grande puissance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>High power</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Gran potencia</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Revêtement optique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Optical coating</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Revestimiento óptico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Basse température</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Low temperature</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Baja temperatura</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Dépôt conversion</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Conversion coating</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Depósito conversión</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Microstructure</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Microstructure</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Microestructura</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Réflexion optique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Optical reflection</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Reflexión óptica</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Mesure optique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Optical measurement</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Medida óptica</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Polymère</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Polymer</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Polímero</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Oxyde de silicium</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Silicon oxides</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Alumine</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Alumina</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Alúmina</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Matériau revêtu</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Coated material</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Material revestido</s0>
<s5>28</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Céramique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Ceramic materials</s0>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Cerámica</s0>
<s5>29</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>SiO2</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Al2O3</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Matériau à faible emissivité</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Low-emissivity material</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>111</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000114 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000114 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0084039
   |texte=   High emissivity coatings based on polysilazanes for flexible Cu(In,Ga)Se2 thin-film solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024